Abstract

In this study, a numerical modeling system based on the dispersion–correction finite difference scheme equipped with a grid-nesting scheme is constructed. The model is applied to simulate the propagation of three historical tsunami events that attacked the east coast of Korea. The calculated free-surface displacements for the cases of the 1983 Akita and the 1993 Okushiri tsunamis are compared with the observations at four tidal stations along the east coast of Korea. The comparison shows that the results agree well with the observations. The analyses of the simulated results show that underwater topography, such as submerged rises and ridges, plays an important role in the propagation of tsunamis in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.