Abstract

Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longitudinal modes are selected for defect detection in steel strands. Dispersion curves for helical and central wires in a 17.80 mm nominal diameter seven-wire steel strand are numerically obtained firstly, and propagation characteristics of high-order longitudinal modes, such as wave structures, attenuation and dispersion, are analyzed. In experiments, the signals of ultrasonic guided wave at different high frequencies are excited and received at one end of a steel strand by using the same single piezoelectric transducer. The identification of longitudinal modes in the received signals is achieved based on short time Fourier transform. Furthermore, appropriate L(0, 5) mode at 2.54 MHz is chosen for detecting an artificial defect in a helical wire of the steel strand. Results show that high order longitudinal modes in a high frequency range with low dispersion and attenuation whose energy propagates mainly in the center of the wires can be used for defect detection in long range steel strands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call