Abstract

In the present paper examples for propagating and non-propagating conditions of slip bands and short fatigue cracks in a ferritic-austenitic duplex steel are given, which were quantified by means of SEM in combination with automated EBSD. To classify the results within the scope of predicting the service life under HCF- and VHCF-loading conditions a numerical model based on the boundary-element method has been developed, where crack propagation is described by means of partially irreversible dislocation glide on crystallographic slip planes in a polycrystalline model microstructure (Voronoi cells). This concept is capable to account for the strong scattering in fatigue life for very small strain amplitudes and to contribute to the concept of tailored microstructures for improved cyclic-loading behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.