Abstract

An ultrafast, laser-driven x-ray source with a liquid mercury target has been used for phase contrast imaging of an excised murine liver and for computed tomography of an electronic component. The x-ray spectrum emitted at 5kHz repetition rate is found to be similar to that of a 2.5W, 30kV microfocus x-ray tube with a tungsten anode. The images of the excised liver show the venous network with approximately 20μm spatial resolution. Phase contrast features in the tomographic images of the electronic component, transferred to the orthogonal cross sections upon reconstruction, show the internal components of the device with high contrast. Adequate signal-to-noise ratios in the images were achieved with exposure times between 1 and 3min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.