Abstract

This paper describes the development of a Boussinesq three-equation model for simulating propagation and transformation of periodic nonlinear waves (cnoidal waves) in an arbitrary shallow-water basin. The Boussinesq equations in terms of depth-averaged horizontal velocities and free-surface elevation are solved numerically in a curvilinear coordinate system. An Euler’s predictor–corrector finite–difference algorithm is applied for numerical computation. The effects of irregular boundary, non-uniform water depth and coastal structures inside a basin are all included in the model simulation. A second-order cnoidal wave solution for the Boussinesq equations is used as an incident wave condition. A set of open boundary conditions is also applied to effectively transmit waves out of the computational domain. Model tests were conducted by simulating waves propagating past an isolated breakwater. The effect of variable depth was examined with modeling waves over an uneven bottom with convex ramp topography. The overall evolution of wave propagation, diffraction and reflection in coupled harbors with various layouts of inner and outer breakwaters was also studied. Data comparisons reveal that the simulated wave heights agree reasonably well with laboratory measurements, especially in the region of inner basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call