Abstract

We study the propagation of mid-infrared surface plasmons on non-tapered and tapered two-wire transmission lines on Si and CaF2 substrates, the two materials representing substrates with large and small refractive index, respectively. A comparative numerical study predicts a larger effective wavelength and an increased propagation length (i.e. weaker damping) for the CaF2 substrate. By near-field microscopy we image the near-field distribution along the transmission lines and experimentally verify surface plasmon propagation. Amplitude- and phase-resolved near-field images of a non-tapered transmission line on CaF2 reveal a standing wave pattern caused by back-reflection of the surface plasmons at the open-ended transmission line. Calculated and experimental near-field images of tapered transmission lines on Si and CaF2 demonstrate that for both substrates the mid-IR surface plasmons are compressed when propagating along the taper. Importantly, the nanofocus at the taper apex yields a stronger local field enhancement for the low-refractive index substrate CaF2. We assign the more efficient nanofocusing on CaF2 to the weaker damping of the surface plasmons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.