Abstract

Two-dimensional in-plane wave propagation and localization in the disordered layered piezoelectric phononic crystals with material 6 mm are investigated taking the electromechanical coupling into account. The electric field is approximated as quasi-static. The analytical solutions of elastic waves are obtained. The 6 × 6 transfer matrix between two consecutive unit cells is obtained by means of the mechanical and electrical continuity conditions. The expressions of the localization factor and localization length in the disordered periodic structures are presented by regarding the variables of the mechanical and electrical fields as the elements of the state vector. The numerical results of the localization factors and localization lengths are presented for two kinds of disordered piezoelectric phononic crystals, i.e. ZnO–PZT–5H and PVDF–PZT–5H piezocomposites. It is seen from the results that the incident angle of elastic waves and the thickness of the piezoelectric ceramics have significant effects on the wave localization characteristics. For different piezoelectric phononic crystals, the effects of the incident angle are very different. Moreover, with the increase of the disorder degree, the localization phenomenon is strengthened.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.