Abstract

IntroductionFractional nonlinear models have been widely used in the research of nonlinear science. A fractional nonlinear Schrödinger equation with distributed coefficients is considered to describe the propagation of pi-second pulses in inhomogeneous fiber systems. However, soliton molecules based on the fractional nonlinear Schrödinger equation are hardly reported although many fractional soliton structures have been studied. ObjectivesThis paper discusses the propagation and interaction between special fractional soliton and soliton molecules based on analytical solutions of a fractional nonlinear Schrödinger equation. MethodsTwo analytical methods, including the variable-coefficient fractional mapping method and Hirota method with the modified Riemann–Liouville fractional derivative rule, are used to obtain analytical non-travelling wave solutions and multi-soliton approximate solutions. ResultsAnalytical non-travelling wave solutions and multi-soliton approximate solutions are derived. The form conditions of soliton molecules are given, and the dynamical characteristics and interactions between special fractional solitons, multi-solitons and soliton molecules are discussed in the periodic inhomogeneous fiber and the exponential dispersion decreasing fiber. ConclusionAnalytical chirp-free and chirped non-traveling wave solutions and multi-soliton approximate solutions including soliton molecules are obtained. Based on these solutions, dynamical characteristics and interactions between special fractional solitons, multi-solitons and soliton molecules are discussed. These theoretical studies are of great help to understand the propagation of optical pulses in fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call