Abstract

Interplanetary coronal mass ejections (ICMEs) evolve as they propagate outward from the Sun. They interact with and eventually equilibrate with the ambient solar wind. One difficulty in studying this evolution is that ICMEs have no unique set of identifying characteristics, so boundaries of the ICMEs are difficult to identify. Two characteristics present in some ICMEs but generally not present in the ambient solar wind, high helium/proton density ratios and low tempera-ture/speed ratios, are used to identify ICMEs. We search the Helios 1 and 2, WIND, ACE, and Ulysses data for ICMEs with these characteristics and use them to study the radial evolution of ICMEs. We find that the magnetic field magnitude and density decrease faster in ICMEs than in the ambient solar wind, but the temperature decreases more slowly than in the ambient solar wind. Since we also find that ICMEs expand in radial width with distance, the protons within ICMEs must be heated. Scale sizes for He structures are smaller than for proton structures within ICMEs.Key wordsICMEsolar wind

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.