Abstract

In recent years, communication systems, including RFID, have been used in intelligent beehives for beekeeping. RFID systems in the UHF frequency band offer reading distances of tens of centimetres, allowing the localisation and identification of the queen bee inside the hive. With this purpose, this work proposes an analysis of an environment of propagation that consists of a honeycomb frame, where the reader is placed within the frame, and the tag is placed in different positions over it. A honeycomb frame consists of a wooden box containing a honey wax panel, supported by metallic wires. The environment is modelled theoretically using its S-parameters and simulated in CST Studio. An analysis of these results and empirical measurements is performed. The results show that a periodicity in the received power of the tag is found with respect to the distance to the reader when the tag is located in a direction parallel to the wire, where local maximum and minimum values are found. Additionally, when the tag is placed over a wire of the frame, a higher received power is obtained compared to the case where the tag is placed between two wires. Furthermore, it has been observed that the reading range has increased with respect to free space, covering the full frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.