Abstract

The resonant nonlinear Schrödinger (RNLS) equation exhibits the usual cubic nonlinearity present in the classical nonlinear Schrödinger (NLS) equation together with an additional nonlinear term involving the modulus of the wave envelope. It arises in the context of the propagation of long magneto-acoustic waves in cold, collisionless plasma and in capillarity theory. Here, a natural (2 + 1) (2 spatial and 1 temporal)-dimensional version of the RNLS equation is introduced, termed the ‘resonant’ Davey–Stewartson system. The multi-linear variable separation approach is used to generate a class of exact solutions, which will describe propagating, doubly periodic wave patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call