Abstract

Developments in the field of remote sensing have led to various cost-efficient forest inventory methods at different levels of detail. Remote-sensing techniques such as airborne laser scanning (ALS) and digital photogrammetry are becoming feasible alternatives for providing data for forest planning. Forest-planning systems are used to determine the future harvests and silvicultural operations. Input data errors affect the forest growth projections and these effects are dependent on the magnitude of the error. Our objective in this study was to determine how the errors typical to different inventory methods affect forest growth projections at individual stand level during a planning period of 30 years. Another objective was to examine how the errors in input data behave when different types of growth simulators are used. The inventory methods we compared in this study were stand-wise field inventory and single-tree ALS. To study the differences between growth models, we compared two forest simulators consisting of either distance-independent tree-level models or stand-level models. The data in this study covered a 2,000-ha forest area in southern Finland, including 240 sample plots with individually measured trees. The analysis was conducted with Monte Carlo simulations. The results show that the tree-level simulator is less sensitive to errors in the input data and that by using single-tree ALS data, more precise growth projections can be obtained than using stand-wise field inventory data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call