Abstract

In a dielectric tube partially surrounded by distilled water, a propagating discontinuity is observed in a cold argon plasma jet at atmospheric pressure in both the laminar and turbulent flow regimes. Through electrical and optical diagnostics, the mechanism of formation for this phenomenon is investigated. Results show that the strong polarization of the distilled water, the constraint from the electric field (or a sufficiently high electric field), and the transport of the active species are in combination responsible for the propagating plasma discontinuity. Indeed, smaller surface areas of the tube surrounded by distilled water, shorter distances between the distilled water and the ground electrodes, as well as larger gas flow rates can together make the discontinuous discharge channel appear more readily. In particular, when the flow switches from laminar to turbulent, the plasma behavior of the discontinuity no longer depends on the gas flow rate. This is mostly attributed to the extreme instability of turbulence which further suppresses the transport of active species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call