Abstract

Turbulent jets are known to support large-scale vortical wave packets traveling downstream. We show that a propagating helical wave represents a common form of the optimal eigenfunction tracking these structures from the near to the far field of a round jet issuing from a pipe. Two first mirror-symmetric modes containing around 5% of the total turbulent kinetic energy capture all significant large-scale events and accurately replicate the full shear-layer dynamics of the azimuthal wave number m=1. A family of the most energy-containing traveling waves represents low wave numbers and is described in terms of empirical dispersion laws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.