Abstract

We show, by molecular simulation, that for a range of standard, coarse-grained, nematic liquid crystal models, the director bend fluctuation is a propagating mode. This is in contrast to the generally accepted picture of nematic hydrodynamics, in which all the director modes (splay, twist, bend, and combinations thereof) are overdamped. By considering the various physical parameters that enter the equations of nematodynamics, we propose an explanation of this effect and conclude that propagating bend fluctuations may be observable in some experimental systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call