Abstract
With the popularization of Topological Data Analysis, the Reeb graph has found new applications as a summarization technique in the analysis and visualization of large and complex data, whose usefulness extends beyond just the graph itself. Pairing critical points enables forming topological fingerprints, known as persistence diagrams, that provides insights into the structure and noise in data. Although the body of work addressing the efficient calculation of Reeb graphs is large, the literature on pairing is limited. In this paper, we discuss two algorithmic approaches for pairing critical points in Reeb graphs, first a multipass approach, followed by a new single-pass algorithm, called Propagate and Pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.