Abstract

We develop a general proof-theoretic framework for various classes of set-valued operators, including maximally as well as cyclically monotone and rectangular operators and we discuss a treatment for sums of set-valued operators [Formula: see text] in that context such that all of the previous fits into logical metatheorems on bound extractions. In particular, we introduce quantitative forms for [Formula: see text] being (weakly) uniformly rectangular with witnessing moduli. Based on this, we give quantitative forms of the Brezis-Haraux theorem that use such moduli as input. It turns out that a modulus for weak uniform rectangularity, which can be extracted even from non-effective proofs of rectangularity, is sufficient while the bound gets simpler in the case of a modulus for [Formula: see text] being uniform rectangular which can be extracted from semi-constructive proofs. We use our results to explain recent proof minings in the context of Bauschke's solution to the zero displacement conjecture and its extensions to other classes of functions than metric projections as instances of logical metatheorems. This article is part of the theme issue 'Modern perspectives in Proof Theory'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.