Abstract
AbstractIn this article the lightface ${\rm{\Pi }}_1^1$-Comprehension axiom is shown to be proof-theoretically strong even over ${\rm{RCA}}_0^{\rm{*}}$, and we calibrate the proof-theoretic ordinals of weak fragments of the theory ${\rm{I}}{{\rm{D}}_1}$ of positive inductive definitions over natural numbers. Conjunctions of negative and positive formulas in the transfinite induction axiom of ${\rm{I}}{{\rm{D}}_1}$ are shown to be weak, and disjunctions are strong. Thus we draw a boundary line between predicatively reducible and impredicative fragments of ${\rm{I}}{{\rm{D}}_1}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.