Abstract

This paper is the first of a series of three articles that present the syntactic proof of the PA-completeness of the modal system G, by introducing suitable proof-theoretic objects, which also have an independent interest. We start from the syntactic PA-completeness of modal system GL-LIN, previously obtained in [7], [8], and so we assume to be working on modal sequents S which are GL-LIN-theorems. If S is not a G-theorem we define here a notion of syntactic metric d(S, G): we calculate a canonical characteristic fomula H of S (char(S)) so that ⊢G ∼ H → (∼S) and ⊢GL-LIN ∼ H, and the complexity σ of ∼ H gives the distance d(S, G) of S from G. Then, in order to produce the whole completeness proof as an induction on this d(S, G), we introduce the tree-interpretation of a modal sequent Q into PA, that sends the letters of Q into PA-formulas describing the properties of a GL-LIN-proof P of Q: It is also a d(*, G)-metric linked interpretation, since it will be applied to a proof-tree T of ∼ H with H = char(S) and σ(∼ H) = d(S, G).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.