Abstract

The Alon-Tarsi conjecture states that for even $n$, the number of even latin squares of order $n$ differs from the number of odd latin squares of order $n$. Zappa found a generalization of this conjecture which makes sense for odd orders. In this note we prove this extended Alon-Tarsi conjecture for prime orders $p$. By results of Drisko and Zappa, this implies that both conjectures are true for any $n$ of the form $2^rp$ with $p$ prime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.