Abstract

Shewanella oneidensis is known for its ability to respire on extracellular electron acceptors. The spectrum of these acceptors also includes anode surfaces. Based on this activity, a versatile S. oneidensis based biosensor strain was constructed in which electricity production can be modulated. Construction started with the identification of a usable rate-limiting step of electron transfer to an anode. Thereafter, the sensor strain was genetically engineered to produce a protein complex consisting of the three proteins MtrA, MtrB and MtrF. This complex is associated to the outer membrane and most probably enables membrane spanning electron transfer. MtrF is an outer membrane cytochrome that catalyzes electron transfer reactions on the cell surface. Under anoxic conditions, wild type cells do not express MtrF but rather MtrC as electron transferring outer membrane cytochrome. Still, our analysis revealed that MtrF compared to MtrC overexpression is less toxic to the cell which gives MtrF a superior position for biosensor based applications. Transcription of mtrA, mtrB and mtrF was linked up to an inducible promoter system, which positively reacts to rising l-arabinose concentrations. Anode reduction mediated by this strain was linearly dependent on the arabinose content of the medium. This linear dependency was detectable over a wide range of arabinose concentrations. The l-arabinose biosensor presented in this study proves the principle of an outer membrane complex based sensing method which could be easily modified to different specificities by a simple change of the regulatory elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.