Abstract

Nonlinear acoustics offers a new range of acoustic applications that are currently being exploited. The parametric nonlinear effect—the occurrence of low frequencies with modulated high-frequency emission—is of particular interest. This work provides a systematic exposition of the theoretical framework on which the so-called parametric nonlinear effect is based. In relation to this behavior is an analytical discussion of how to solve the problem for two cases: (i) nonlinear behavior with modulation, and (ii) parametric emission of two monochromatic waves (bi-frequency). Subsequently, parametric emission experiments were carried out in air and water using the same transducer to compare the results with those obtained theoretically. In this sense, directivity and attenuation measurements are obtained. Conclusively, this research offers a proof of concept for underwater acoustic communications. It is characterized by the transmission of a binary sequence through Frequency Shift Keying (FSK) modulation, and the subsequent decoding of each received bit (either 1 or 0) utilizing advanced signal processing with the cross-correlation technique. This paper accentuates the significant potential of employing the parametric effect for specialized communication applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.