Abstract

Major aims were to test and evaluate a new concept for assessment of nitrogen use efficiency (NUE) of crops by growing six spring wheat varieties in greenhouse and field environments. NUE was calculated with a plant based concept integrating the entire crop life history and separating plant characteristics from environmental factors affecting NUE. Specific hypotheses were tested related to the varieties’ drought and nutrient fertilisation responses for NUE components, and coherence of those responses in field and greenhouse. The wheat (Triticum aestivum L.) cultivated varieties ‘Diskett’, ‘Granary’, ‘Quarna’, ‘Stilett’, ‘Vinjett’, and a Swedish landrace (‘Dala’) were grown in field and greenhouse environments in Central Sweden. Two fertilisation treatments were included in a field and greenhouse experiment, and in the greenhouse also drought. The NUE components N uptake efficiency (UN), grain-specific N efficiency (EN,g) and grain N concentration (CN,g) were assessed. Drought reduced yield and NUE through EN,g, and more so when drought occurred prior to anthesis than after anthesis. Effect of fertilisation treatment on NUE components was similar in the two set-ups, but there were fewer variety × fertilisation interactions in the field. UN was higher in the field and EN,g was higher in the greenhouse, while CN,g and overall NUE were similar in the two environments. Ranking of varieties regarding NUE and UN was similar in the greenhouse and field, but different regarding EN,g and CN,g. The NUE concept is a useful tool to describe and integrate important NUE components for crops grown in different treatments (nutrient fertilisation, drought) and experimental set-ups, i.e. greenhouse and field. Similar variety ranking in overall NUE across experimental set-ups indicates stable results in different environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.