Abstract

This paper presents a wearable upper body exoskeleton system with a model-based compensation control framework to support robot-aided shoulder–elbow rehabilitation and power assistance tasks. To eliminate the need for EMG and force sensors, we exploit off-the-shelf compensation techniques developed for robot manipulators. Thus, target rehabilitation tasks are addressed by using only encoder readings. A proof-of-concept evaluation was conducted with five able-bodied participants. The patient-active rehabilitation task was realized via observer-based user torque estimation, in which resistive forces were adjusted using virtual impedance. In the patient-passive rehabilitation task, the proposed controller enabled precise joint tracking with a maximum positioning error of 0.25 $^\circ$ . In the power assistance task, the users’ muscular activities were reduced up to 85% while exercising with a 5 kg dumbbell. Therefore, the exoskeleton system was regarded as being useful for the target tasks, indicating that it has a potential to promote robot-aided therapy protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.