Abstract

Long QT syndrome (LQTS) type 3 although less common than the first two forms, differs in that arrhythmic events are less likely triggered by adrenergic stimuli and are more often lethal. Effective pharmacological treatment is challenged by interindividual differences, mutation dependence, and adverse effects, translating into an increased use of invasive measures (implantable cardioverter-defibrillator, sympathetic denervation) in patients with LQTS type 3. Previous studies have demonstrated the therapeutic potential of polyclonal KCNQ1 antibody for LQTS type 2. Here, we sought to identify a monoclonal KCNQ1 antibody that preserves the electrophysiological properties of the polyclonal form. Using hybridoma technology, murine monoclonal antibodies were generated, and patch clamp studies were performed for functional characterization. We identified a monoclonal KCNQ1 antibody able to normalize cardiac action potential duration and to suppress arrhythmias in a pharmacological model of LQTS type 3 using human-induced pluripotent stem cell-derived cardiomyocytes.NEW & NOTEWORTHY Long QT syndrome is a leading cause of sudden cardiac death in the young. Recent research has highlighted KCNQ1 antibody therapy as a new treatment modality for long QT syndrome type 2. Here, we developed a monoclonal KCNQ1 antibody that similarly restores cardiac repolarization. Moreover, the identified monoclonal KCNQ1 antibody suppresses arrhythmias in a cellular model of long QT syndrome type 3, holding promise as a first-in-class antiarrhythmic immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call