Abstract
The coefficients of the higher-derivative terms in the low energy expansion of genus-one graviton Type II superstring scattering amplitudes are determined by integrating sums of non-holomorphic modular functions over the complex structure modulus of a torus. In the case of the four-graviton amplitude, each of these modular functions is a multiple sum associated with a Feynman diagram for a free massless scalar field on the torus. The lines in each diagram join pairs of vertex insertion points and the number of lines defines its weight w, which corresponds to its order in the low energy expansion. Previous results concerning the low energy expansion of the genus-one four-graviton amplitude led to a number of conjectured relations between modular functions of a given w, but different numbers of loops ≤w−1. In this paper we shall prove the simplest of these conjectured relations, namely the one that arises at weight w=4 and expresses the three-loop modular function D4 in terms of modular functions with one and two loops. As a byproduct, we prove three intriguing new holomorphic modular identities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.