Abstract

Room-temperature ionic liquids (ILs) are attracting considerable research interest as replacements for traditional molecular solvents in a diverse range of chemical applications, mostly due to their green characteristics and remarkable physical properties. Previously, we reported the liquid structure of 1-ethyl-3-methylimidazolium acetate confined between mica and an atomic force microscope (AFM) tip, and found that approximately three solvation layers form. In this manuscript, we present new data, derived from similar experiments, for three different aprotic ILs [1-butyl-3-methylimidazolium hexafluorphosphate (BMIm PF6), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMIm TSFA), and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP TSFA)] and between five and six solvation layers are identified depending on the IL species. These new results allow us to make suggestions for molecularly designing IL architectures likely to be suitable for a particular application, depending on whether near surface order is desirable or not. Where mobility of component ions and transfer of species to and from the interface is required (DSSCs, hetereogeneous catalysis, etc.), multiple sterically hindered allylic functional groups could be incorporated to minimize substrate-IL interactions and maximize compressibility of the solvation layers. Conversely, in situations where IL adsorption to the interface is desirable (e.g., lubrication or electrode surface restructuring), symmetric ions with localized charge centers are preferable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call