Abstract

The emergent properties resulting from selective supramolecular interactions are of significant importance for materials and chemical systems. For the directed use of such properties, a fundamental understanding of the interaction mechanism and the resulting mode of function is necessary for a tailored design. The self-induced diastereomeric anisochronism effect (SIDA), which occurs in the intermolecular interaction of chiral molecules, generates unique properties such as chiral self-recognition and nonlinear effects. Here we show that anisidine amino acid diamides lead to extraordinary signal splitting in NMR spectra through supramolecular interaction and homochiral self-recognition. By systematic experiments we have investigated the underlying SIDA effect, explored its limits and finally successfully utilized it in the determination of enantiomeric ratios by NMR spectroscopy of chiral 'SIDA-inactive' compounds such as thalidomide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call