Abstract

In this letter, pronounced hysteresis loops were observed in single-walled carbon nanotube-based field-effect transistors (CNTFETs). The shift in threshold voltage was found to increase with increasing gate voltage sweep ranges. A significant enhancement in the charge storage stability over 14 days was obtained at room temperature after a two-stage hydrogen and air annealing process was applied to the CNTFETs. The passivation of interface traps by annealing in hydrogen and the removal of physisorption solvent molecules by annealing in air are suggested to be responsible for the improvement of the charge storage stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.