Abstract

Intrinsic carriers play a dominant role especially in the long wavelength (8-12 μm cut-off) HgCdTe material near ambient temperatures due to high thermal generation of carriers. This results in low minority carrier lifetimes caused by Auger recombination processes. Consequently, this low lifetime at high temperatures results in high dark currents and subsequently high noise. Cooling is one means of reducing this type of detector noise. However, the challenge is to design photon detectors to achieve background limited performance (BLIP) at the highest possible operating temperature; with the greatest desire being close to ambient temperature operation. We have demonstrated a unique planar device architecture using a novel approach in obtaining low arsenic doping concentrations in HgCdTe. Results indicate Auger suppression in P+/π/N+ devices at 300K and have obtained saturation current densities of the order of 3 milli Amps-cm2 on these devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call