Abstract
Transition from smooth, lissencephalic brains to highly-folded, gyrencephalic structures is associated with neuronal expansion and breaks in neurogenic symmetry. Here we show that Neurog2 and Ascl1 proneural genes regulate cortical progenitor cell differentiation through cross-repressive interactions to sustain neurogenic continuity in a lissencephalic rodent brain. Using in vivo lineage tracing, we found that Neurog2 and Ascl1 expression defines a lineage continuum of four progenitor pools, with ‘double+ progenitors’ having several unique features (least lineage-restricted, complex gene regulatory network, G 2 pausing). Strikingly, selective killing of double+ progenitors using split-Cre;Rosa-DTA transgenics breaks neurogenic symmetry by locally disrupting Notch signaling, leading to cortical folding. Finally, consistent with NEUROG2 and ASCL1 driving discontinuous neurogenesis and folding in gyrencephalic species, their transcripts are modular in folded macaque cortices and pseudo-folded human cerebral organoids. Neurog2/Ascl1 double + progenitors are thus Notch-ligand expressing ‘niche’ cells that control neurogenic periodicity to determine cortical gyrification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.