Abstract
AbstractA classical theorem in computability is that every promptly simple set can be cupped in the Turing degrees to some complete set by a low c.e. set. A related question due to A. Nies is whether every promptly simple set can be cupped by a superlow c.e. set, i.e. one whose Turing jump is truth-table reducible to the halting problem ∅′. A negative answer to this question is provided by giving an explicit construction of a promptly simple set that is not superlow cuppable. This problem relates to effective randomness and various lowness notions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.