Abstract

Large language models (LLMs) can assist providers in drafting responses to patient inquiries. We examined a prompt engineering strategy to draft responses for providers in the electronic health record. The aim was to evaluate the change in usability after prompt engineering. A pre-post study over 8 months was conducted across 27 providers. The primary outcome was the provider use of LLM-generated messages from Generative Pre-Trained Transformer 4 (GPT-4) in a mixed-effects model, and the secondary outcome was provider sentiment analysis. Of the 7605 messages generated, 17.5% (n = 1327) were used. There was a reduction in negative sentiment with an odds ratio of 0.43 (95% CI, 0.36-0.52), but message use decreased (P < .01). The addition of nurses after the study period led to an increase in message use to 35.8% (P < .01). The improvement in sentiment with prompt engineering suggests better content quality, but the initial decrease in usage highlights the need for integration with human factors design. Future studies should explore strategies for optimizing the integration of LLMs into the provider workflow to maximize both usability and effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.