Abstract

Impregnating CuCl2 on AC (activated coke) support to synthesize xCuCl2/AC showed superior activity with higher 90% Hg0 removal efficiency at 80-140 °C, as well as a lower oxygen demand of 2% O2 for Hg0 removal. The acceleration on Hg0 removal was observed for NO and SO2. The BET, SEM, XRD, XPS, TPD, and FT-IR characterizations revealed that the larger surface area, sufficient active oxygen species and co-existence of Cu+ and Cu2+ may account for the efficient Hg0 removal. In addition, the low demand of gaseous O2 was contributed to higher content of active oxygen and formed active Cl. After adsorbing on Cu sites, Cl sites, and surface functional groups, the Hg0(ads) removal on xCuCl2/AC was proceeded through two ways. Part of Hg0(ads) was oxidized by active O and formed Hg0, and the other part of Hg0 combined with the active Cl, which was formed by the activation of lattice Cl with the aid of active O, and formed HgCl2. Besides, the Hg2+ detected in outlet gas through mercury speciation conversion and desorption peak of HgCl2 and Hg0 further proved it. As displayed in stability test and simulated industrial application test, CuCl2/AC has a promising industrial application prospect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.