Abstract

It is still a great challenge for developing efficient dual-functional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The electrocatalysts are critical to enhance the efficiency of metal-air cells and fuel cells. In this study, a one-pot vapor deposition method was used to realize the synchronously dope of N and Ni (trace) into Co/C to form Co–Ni (trace)/N-doped carbon nanotubes (Co–Ni (trace)/NCNTs). An interesting result is that injecting dicyandiamide (DCD) into Ni foam as a precursor led to the in situ formation of NCNTs, with synchronous doping of trace Ni into Co species. The cooperative effects of the Co–Ni (trace) and N-doped carbon nanotubes resulted in superior dual-functional electrocatalytic performance of Co–Ni (trace)/NCNTs for the ORR (half-wave potential E1/2 vs. RHE: 0.83 V, electron transfer number n: 3.97) and OER (overpotential vs. RHE: 337 mV at 10 mA cm−2, Tafel slope: 94.0 mV dec−1). Moreover, the Co–Ni (trace)/NCNTs catalyst showed excellent stability during 20,000 s of durability testing for both ORR and OER. This study provides a feasible strategy for designing efficient nonnoble metal-catalysts for renewable energy conversion devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call