Abstract
Selective catalytic reduction (SCR) catalysts, which are widely used to mitigate rising nitrogen oxide (NOx) pollution originating from fine dust, are associated with issues such as a limited operating temperature range and the demand for a higher NOx conversion efficiency. Specifically, to increase NOx conversion efficiency, increasing catalytic reaction sites by improving specific surface area (SSA) and dispersing catalytic active particles across the catalyst are of great significance. When active materials have low dispersibility, their activity is lowered owing to aggregation and crystallisation as the catalytic material content increases. To address this issue, it is necessary to realize the dispersion of active materials, while ensuring that no aggregation via the surface occurs. In this study, we investigated the use of N-doped TiO2 (N-TiO2) to disperse the active particles. Approximately 17 at.% N-doped was into the TiO2 support. The results obtained showed that the addition of these supports resulted in the even dispersion of the active materials on the catalyst surface, yielding abundant anchoring sites, which improved SSA, as confirmed by the transmission electron microscopy analysis of the textural properties of the catalysts. Further, these catalysts exhibited high catalytic activity over a wide temperature range (200–400 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.