Abstract

Different amounts of Mn and Ce oxides were loaded onto nitric acid-modified activated carbon (ACN) by wet impregnation. The series of catalysts were employed for the selective catalytic reduction of NO x by NH3 at temperatures between 100 and 250 °C. Cerium-modified catalysts exhibited higher de-NO x performance than those modified with Mn/ACN, even with the same total loadings. The precursor solution with a molar ratio for Ce/(Mn + Ce) of 0.4 exhibited the highest catalytic activity. Enhanced resistance to SO2 and H2O and better stability were observed for 10%Mn–Ce(0.4)/ACN relative to 10%Mn/ACN. The catalysts were further characterized by N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed desorption of ammonia (NH3-TPD). The N2 physisorption and XRD results suggested that co-doping Ce with Mn increased the surface area and promoted the dispersion of Mn–Ce binary metal oxides. H2-TPR the NH3-TPD results demonstrated that the interaction between manganese oxide and cerium oxide species enhanced the redox and surface acidity of 10%Mn–Ce(0.4)/ACN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call