Abstract

Abstract MnOx-Fe3O4 nanomaterials were fabricated by using the innovative scheme of pyrolyzing manganese-doped iron-based metal organic framework in inert atmosphere and exhibited extraordinary performance of NO reduction by CO (CO-SCR). Multi-technology characterizations were conducted to ascertain the properties of fabricated materials (e.g., TGA, XRD, SEM, FT-IR, XPS, BET, H2-TPR and O2-TPD). Moreover, the interaction between reactants and catalysts was ascertained by in situ FT-IR. Experimental results demonstrated that Mn was an ideal promoter for iron oxides, resulting in decrease of crystallite size, improve reducibility property, enhance the mobility and the amount of lattice O2– species, as well as strength the adsorption ability of active NO and CO to form multiple species (e.g., nitrate and carbonate). The unprecedented enhancement of CO-SCR activity over Mn-Fe nanomaterials follows the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) reaction pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call