Abstract

Recently, iron oxide nanoparticles (IONPs) have gathered special attention in regenerative medicine. Owing to their magnetic and bioactive properties, IONPs are utilized in the fabrication of novel biomaterials. Yet, there was no report regarding thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) polymer doped with IONPs on osteogenic differentiation of mesenchymal stem cells. Thus the objectives of presented study was to: (a) fabricate magnetic TPU + PLA sponges doped with iron (III) oxide Fe2 O3 nanoparticles; (b) investigate the effects of biomaterial and its exposition to static magnetic field (MF) on osteogenic differentiation, proliferation, and apoptosis in adipose-derived mesenchymal stem cells (ASCs). TPU + PLA sponges were prepared using solvent casting technique while incorporation of the Fe2 O3 nanoparticles was performed with solution cast method. RT-PCR was applied to evaluate expression of osteogenic-related genes and integrin's in cells cultured on fabricated materials with or without the stimulation of static MF. MF stimulation enhanced the expression of osteopontin and collagen type I while decreased expression of bone morphogenetic protein 2 in tested magnetic materials-TPU + PLA/1% Fe2 O3 and TPU + PLA/5% Fe2 O3 . Therefore, TPU + PLA sponges doped with IONPs and exposure to MF resulted in improved osteogenic differentiation of ASC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call