Abstract

Abstract Solid oxide fuel cells (SOFCs) offer great promise for the most efficient and cost-effective conversion to electricity of a wide variety of fuels. The cathode materials with high electro-catalytic activity for oxygen reduction reaction is vital to the development of commercially-viable SOFCs to be operated at reduced temperatures. In present study, cobalt-based perovskite oxides SrxCo0.7Nb0.1Fe0.2O3−δ (SCNF, x = 0.95 and 1) were comparatively investigated as promising cathode materials for intermediate-temperature SOFCs. The SCNF compounds with a slight Sr deficiency (S0.95CNF) exhibited single phase of primitive cubic structure with Pm-3m symmetry. A small Sr deficiency is demonstrated to greatly enhance the electrochemical performance of stoichiometric SCNF cathode due to significantly increased oxygen vacancy. The polarization resistance of S0.95CNF at 700 °C was 0.11 Ω cm2, only about 61% of SCNF. The rate limiting step for oxygen reduction reaction (ORR) is demonstrated to be oxygen ion transfer within the bulk electrode and/or from electrode to electrolyte through the triple phase boundary. Full cells with the SCNF cathode present good performance and stable output at reduced temperatures, indicating the great potential for enhanced performance of Co-based cathodes with A-site deficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call