Abstract

Our previous study identified a hypovirulent strain QT5-19 of Botrytis cinerea, the causal agent of the plant gray mold disease, and found that QT5-19 can produce volatile organic compounds (VOCs) with high antifungal activity and high control efficacy against B. cinerea. However, impact of the QT5-19 VOCs on plant growth remains unknown. This study was conducted to investigate the impact of the QT5-19 VOCs on tomato growth, and to elucidate the mechanisms for the plant growth-promoting (PGP) activity of the QT5-19 VOCs. Results showed that compared to the control treatment, the QT5-19 VOCs significantly (P < 0.05) promoted tomato growth, and the PGP activity of the QT5-19 VOCs acted in dose- and time-dependent manners. Results also showed that the values of photosynthetic assimilation, stomatal conductance and transpiration, water use efficiency and chlorophyll content in the treatments of the QT5-19 VOCs were significantly (P < 0.05) higher than the corresponding values in the control treatment. The QT5-19 VOCs up-regulated expression of the genes for expansins (EXP2, EXP9 and EXP18), IAA (SlIAA1, SlIAA3 and SlIAA9), cytokinins (SlCKX1) and gibberellins in leaves and/or roots, whereas down-regulated expression of the gene ACO1 for ethylene in both organs. Moreover, enhanced accumulation of auxins and decreased accumulation of ethylene were observed in tomato roots in the treatment of the QT5-19 VOCs, compared to the control treatment. These results suggest that the QT5-19 VOCs probably promote tomato growth through improving photosynthesis and biosynthesis of expansins and IAA, and reducing ethylene biosynthesis. This study suggests that QT5-19 is a versatile biocontrol control agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.