Abstract

Uncontrolled TLR signaling can cause inflammatory immunopathology and trigger autoimmune diseases. For example, TLR7 promotes pathogenesis of systemic lupus erythematosus. However, whether RNA structural changes affect nucleic acids-sensing TLRs signaling and impact disease progression is unclear. Here by iCLIP-seq we identify a TLR7-binding long non-coding RNA, Lnc-Atg16l1, and find that it promotes TLR7 and other MyD88-dependent TLRs signaling in various types of immune cells. Depletion of Lnc-Atg16l1 attenuates development of TLR7-linked autoimmune phenotypes in the mouse SLE model. Mechanistically, we find that Lnc-Atg16l1 binds to TLR7 at bases near U84 and MyD88 at bases around A129. The analysis of Lnc-Atg16l1 in situ structures show that it strengthens the interaction between TIR domain of TLR7 and MyD88 through specific stem-loop structure changes as a molecular scaffold after TLR7 activation to promote TLR7 downstream signaling. Therefore, we discover a mechanism for host RNA regulation of innate signaling and autoimmune disease through its structural changes. These findings provide insights into the pro-inflammatory function of self RNA in a structure-dependent manner and suggest a potential target for TLR-related autoimmune disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.