Abstract
Heterogeneous catalysts are fascinating for advanced oxidation processes (AOPs) in wastewater treatment to reduce cost, metal contamination, and pH operation limitations. However, they usually encounter low catalytic efficiency because of the difficult single-electron-transfer (SET) pathway during AOPs. Herein, an efficient heterogeneous catalyst for AOPs is realized through the rational regulation of N coordination around Co single-atom (SA) centers in favor of SET. As guided by calculations, low N coordination enables a high density of electronic states at the Fermi energy level of SA Co to facilitate SET activation of peroxomonosulfate (PMS). A special oxide-compounding method is further applied to decrease the N coordination of SA Co on the carbon carriers from common Co1-N3/4 to the desired Co1-N2. Co1-N2 shows a delightful activity for AOP degradation of various organic pollutants with kinetic rate and turnover frequency values up to 0.862 min-1 and 389 h-1, respectively, greatly outperforming those of Co1-N3/4. It is also superior in a wide pH operation range and has strong resistance to environmental disturbances. Detailed mechanistic investigations confirm the generation of singlet oxygen (1O2) instead of common radical O species from the SET between PMS and Co1-N2, corroborating the calculated results and accounting for the enhanced AOP activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.