Abstract
We report an electrolysis system using NiFe layered double hydroxide/CoMoO4/nickel foam (NFLDH/CMO/NF) as the anode and CMO/NF as the cathode for simultaneous phenol electro-oxidation and water electrolysis. This system shows high performance for both phenol degradation and hydrogen evolution. We demonstrate that the degradation rate of phenol on the active anode is governed by the mass transfer rate at a low phenol concentration (0.5-2 mM) and by the electro-oxidation rate at a high phenol concentration (5 mM). The anodic oxygen evolution reaction (OER) can promote the phenol degradation through enhanced mass transfer efficiency. More importantly, the common deactivation issue of phenol electro-oxidation on the inert anode can be eliminated by the high OER activity of the active anode. The constructed full electrolytic cell only needs a low potential of 1.498 V to achieve 10 mA/cm2 for water electrolysis. The reported promotion effect of phenol degradation by OER as well as the improved anode resistance to deactivation offer new insights into efficient and robust waste-to-resource electrolysis system for water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.