Abstract

This paper describes the application of a bifunctional polyacrylamide ( pA–V–F) presenting both vancomycin and fluorescein groups, to modify the surfaces of multiple species of Gram-positive bacteria ( Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Enterococcus faecalis) to control molecular recognition of these surfaces. The vancomycin groups allowed the specific recognition of a structural component of the bacterial cell wall: peptides terminated in d–Ala– d–Ala. The fluorescein groups allowed the imaging of binding of polymer to the surfaces of bacteria by fluorescence, and are representative, low molecular weight haptens; their recognition by anti-fluorescein antibodies provides proof-of-principle that bifunctional polymers can be used to introduce haptens onto the surface of the bacteria. Flow cytometry revealed that polymer-labeled S. aureus and S. pneumoniae were opsonized by anti-fluorescein antibodies ∼20-fold more than were untreated bacteria; nearly all (∼92%) polymer-labeled S. aureus, and a large (76%) fraction of polymer-labeled S. pneumoniae were opsonized. The bound antibodies then promoted phagocytosis of the bacteria by cultured J774 macrophage-like cells. Flow cytometry revealed that macrophages ingested S. aureus decorated with the polymer-antibody complexes ∼2-fold more efficiently than S. aureus in control groups, in spite of the high background (caused by efficient antibody-independent ingestion of S. aureus by macrophages). This paper, thus, demonstrates the ability of a bifunctional polymer to carry out three distinct functions based on polyvalent molecular recognition: (i) recognition of the surface of Gram-positive bacteria, (ii) modification of this surface to generate specific binding sites recognized by an antibody, and (iii) promotion of phagocytosis of the opsonized bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.