Abstract

The ability to create artificial thick tissues is a major tissue engineering problem, requiring the formation of a suitable vascular supply. In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel. GYIGSRG (NH2-Gly-Tyr-Ile-Gly-Ser-Arg-Gly-COOH, GG) has been conjugated to sodium alginate (ALG) to synthesize a biological active biomaterial ALG-GG. The product was characterized by 1H NMR, FT-IR and elemental analysis. A series of CaCO3/ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-δ-lactone/calcium carbonate (GDL/CaCO3) in different molar ratios. The mechanical strength and swelling ratio of the composite hydrogels were studied. The results revealed that both of them can be regulated under different preparation conditions. Then, CaCO3/ALG-GG composite hydrogel was implanted in vivo to study the ability to induce angiogenesis. The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group, and it may be valuable in the development of thick tissue engineering scaffold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call