Abstract

MgO-based sorbents are promising candidates for CO2 capture as they are widely available and feasible in thermodynamics, but the development of MgO-based sorbents operating at elevated temperature and pressure is still a challenging task due to sintering. Herein, we selected eutectic carbonates with high melting point as promoters for the application under elevated conditions. Among various eutectic carbonates, MgO with eutectic ternary LiNaK carbonate (ETC) doping exhibited the highest MgO conversion thanks to crystal defects based on the XRD analysis. The highest CO2 capture capacity of 0.73 gCO2/gsorbent was obtained with 20 wt% ETC at 400 °C and 2 MPa. With further elevation of operating parameters to 540 °C and 5 MPa, the sample still shows a stable MgO conversion of 0.69 after 30 cycles, where the material exhibits a porous structure that inhibits the sintering. The density function theory calculations reveal that the LiNaK doping lowers the formation energy of surface oxygen vacancy, providing possibility for the subsequent oxygen ion migration. The deep K incorporation is most effective to promote the oxygen ion diffusion with decreased oxygen ion migration energy barrier from 3.68 to 2.04 eV. This study can guide the design of high-performance CO2 sorbents at wider application conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.