Abstract
The stable ascorbic acid derivative 2- O-α- d-glucopyranosyl- l-ascorbic acid (AA-2G) was used to investigate the role of ascorbic acid (AA) in B cell differentiation in vitro. AA-2G is stable in a solution unlike AA but is hydrolyzed by cellular α-glucosidase to release AA. Mouse spleen B cells were primed for 2 days with an anti-μ antibody in the presence of interleukin (IL)-4 and IL-5 and then washed and recultured with AA-2G in the presence of IL-4 and IL-5. AA-2G, but not AA, dose-dependently increased IgM production, the greatest enhancement being 150% at concentrations of more than 0.5 mM. In the absence of IL-4 and IL-5, primed B cells produced a negligible amount of IgM, and AA-2G had no effect. AA-2G-induced IgM production in the presence of IL-4 and IL-5 was inhibited by the α-glucosidase inhibitor castanospermine. Intracellular AA content, depleted during the priming period, increased by adding AA-2G at the start of reculture. Treatment of B cells with AA-2G resulted in an increase in the number of IgM-secreting cells, CD138-positive cells and CD45R/B220-negative cells. The number of viable cells in untreated cultures decreased gradually, but the decrease was significantly attenuated by AA-2G, resulting in about 70% more viable cells in AA-2G-treated cultures. AA-2G caused a slight but reproducible enhancement of DNA synthesis and a slight decrease in the number of cells with a sub-G1 DNA content. These results demonstrated that AA released from AA-2G enhanced cytokine-dependent IgM production in anti-μ-primed B cells and suggest that its effect is caused through promoting the differentiation of B cells to plasma cells and attenuating the gradual decrease in the number of viable cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Immunology Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.