Abstract

Iron-loaded porous biochar (FPBC) was synthesized by co-pyrolysis method using sawdust and potassium ferrate at 500 (FPBC500) and 800°C (FPBC800), then characterized and applied to eliminate antimonite (Sb(III)) and antimonate (Sb(V)) in aqueous. Due to alkali erosion on feedstock and K/Fe-oxides attacking carbon, FPBC800 obtained a larger specific surface area (SSA) (515.49 m2·g−1) that was 5.48-fold that of PFBC500, meaning the exposure of more active sites. Fe3O4 was formed on FPBC500, but Fe0 and Fe3C were generated on FPBC800. FPBC800 showed the optimal sorption performance for Sb(III) (144.48 mg·g−1) and Sb(V) (45.29 mg·g−1), which were much higher than that of FPBC500. Noteworthily, Sb(III) anchored on FPBC was oxidized to Sb(V) with less ecotoxicity; moreover, FPBC800 with Fe0 showed stronger oxidization. Although pH-dependent sorption of Sb(III)/Sb(V) on FPBC occurred, the resistance to environmental factors showed a potential for eliminating actual pollution, demonstrating an easy-to-operate construction strategy for modified biochar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.