Abstract
Although granular activated carbon (GAC) supplementation into food waste anaerobic digestion system is an efficient means to enhance methane production. As yet, little is known whether GAC supplementation is suitable for the extreme condition of pH below 4.5, which occurs in the use of readily acidogenic carbohydrate-rich waste (RACW) as methanogenic substrate when at low inoculation/substrate (I/S) ratio. This study investigated the effects of GAC on RACW anaerobic digestion under different inoculation/substrate (I/S) ratios. It was found that the addition of GAC was a preferred alternative method to enhancing I/S ratio for promoting methane production from RACW. The additive dose of 20 g/L was recommended for the methanogenesis of RACW at low I/S of 1:2, and the methane yield was enhanced by 12 times (505 mL/g-VS) compared with that (42 mL/g-VS) from the control. This promotion resulted from the apparently solving the over-acidogenesis problem and the adjustment of pH to the desired range. Further investigation revealed that the added GAC enhanced the activities of acetate kinase and coenzyme F420, that engaged in the acidogenic and methanogenic reactions. Meanwhile, the decrease of hydrogenase and increase of c-Cyts implied that the metabolism of direct interspecies electron transfer (DIET) was probably stimulated by GAC. Microbial investigation inferred that the enriched hydrogenotrophic methanogens and DIET-mediated syntrophic partners of Geobacter/Syntrophomonas with Methanosarcina were responsible for the enhanced methane yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.